Edit on GitHub
    
    
    
    
    
  
  
Step 7: OMX Teleoperation Example

- This tutorial shows you example that OMX teleoperates Dynamixel using the Dynamixel Easy SDK.
 - Unlike single motor control, commands are executed all at once, allowing all motors to be controlled with a single packet. This enables a faster control cycle.
 - With an OMX leader and follower, you can create your own teleoperation system in just a few lines of code.
 
NOTE: This tutorial explains how to write code using the Dynamixel Easy SDK. It assumes that you have already installed the SDK.
Make cpp file
- Create a new C++ source file Open it with your editor.
    
$ touch tutorial_step7.cpp 
Check the Port Names
- Before running the code, check the port name of the connected Dynamixel.
 - For General
    
- OpenRB-150: 
ttyACM0: USB ACM device - U2D2: 
FTDI USB Serial Device converter now attached to ttyUSB0$ sudo dmesg | grep tty 
 - OpenRB-150: 
 
Source Code Description
#include "dynamixel_easy_sdk/dynamixel_easy_sdk.hpp"
int main(){
  dynamixel::Connector connector_leader("/dev/ttyACM1", 1000000);
  dynamixel::Connector connector_follower("/dev/ttyACM0", 1000000);
  std::unique_ptr<dynamixel::GroupExecutor> group_executor_leader = connector_leader.createGroupExecutor();
  std::unique_ptr<dynamixel::GroupExecutor> group_executor_follower = connector_follower.createGroupExecutor();
  std::unique_ptr<dynamixel::Motor> leader_motor1 = connector_leader.createMotor(1);
  std::unique_ptr<dynamixel::Motor> leader_motor2 = connector_leader.createMotor(2);
  std::unique_ptr<dynamixel::Motor> leader_motor3 = connector_leader.createMotor(3);
  std::unique_ptr<dynamixel::Motor> leader_motor4 = connector_leader.createMotor(4);
  std::unique_ptr<dynamixel::Motor> leader_motor5 = connector_leader.createMotor(5);
  std::unique_ptr<dynamixel::Motor> leader_motor_gripper = connector_leader.createMotor(6);
  std::unique_ptr<dynamixel::Motor> follower_motor1 = connector_follower.createMotor(11);
  std::unique_ptr<dynamixel::Motor> follower_motor2 = connector_follower.createMotor(12);
  std::unique_ptr<dynamixel::Motor> follower_motor3 = connector_follower.createMotor(13);
  std::unique_ptr<dynamixel::Motor> follower_motor4 = connector_follower.createMotor(14);
  std::unique_ptr<dynamixel::Motor> follower_motor5 = connector_follower.createMotor(15);
  std::unique_ptr<dynamixel::Motor> follower_motor_gripper = connector_follower.createMotor(16);
  follower_motor1->enableTorque();
  follower_motor2->enableTorque();
  follower_motor3->enableTorque();
  follower_motor4->enableTorque();
  follower_motor5->enableTorque();
  follower_motor_gripper->enableTorque();
  while(true){
    group_executor_leader->addCmd(leader_motor1->stageGetPresentPosition());
    group_executor_leader->addCmd(leader_motor2->stageGetPresentPosition());
    group_executor_leader->addCmd(leader_motor3->stageGetPresentPosition());
    group_executor_leader->addCmd(leader_motor4->stageGetPresentPosition());
    group_executor_leader->addCmd(leader_motor5->stageGetPresentPosition());
    group_executor_leader->addCmd(leader_motor_gripper->stageGetPresentPosition());
    auto result = group_executor_leader->executeRead();
    group_executor_leader->clearStagedReadCommands();
    int leader_motor1_position = result.value()[0].value();
    int leader_motor2_position = result.value()[1].value();
    int leader_motor3_position = result.value()[2].value();
    int leader_motor4_position = result.value()[3].value();
    int leader_motor5_position = result.value()[4].value();
    int leader_motor_gripper_position = result.value()[5].value();
    group_executor_follower->addCmd(follower_motor1->stageSetGoalPosition(leader_motor1_position));
    group_executor_follower->addCmd(follower_motor2->stageSetGoalPosition(leader_motor2_position));
    group_executor_follower->addCmd(follower_motor3->stageSetGoalPosition(leader_motor3_position));
    group_executor_follower->addCmd(follower_motor4->stageSetGoalPosition(leader_motor4_position));
    group_executor_follower->addCmd(follower_motor5->stageSetGoalPosition(leader_motor5_position));
    group_executor_follower->addCmd(follower_motor_gripper->stageSetGoalPosition(leader_motor_gripper_position));
    auto result_void = group_executor_follower->executeWrite();
    group_executor_follower->clearStagedWriteCommands();
  }
}
Add Header Files
- Add 
dynamixel_easy_sdk/dynamixel_easy_sdk.hppto the top of your CPP file. This class is included in the Dynamixel SDK package.#include "dynamixel_easy_sdk/dynamixel_easy_sdk.hpp" 
Create Connector and Motor Object
- Create a 
Connectorobject. - In OMX, two separate OpenRB adapters are used for the leader and follower motors, so create two 
Connectorobjects with different port names. - On OMX, the default baud rate is 1,000,000.
 
NOTE:
- Port names may vary depending on your system configuration.
 
  int main(){
    dynamixel::Connector connector_leader("/dev/ttyACM1", 1000000);
    dynamixel::Connector connector_follower("/dev/ttyACM0", 1000000);
- Create each 
GroupExecutorobjects using thecreateGroupExecutormethod of theConnectorclass. - This object is used to execute multiple commands simultaneously.
    
std::unique_ptr<dynamixel::GroupExecutor> group_executor_leader = connector_leader.createGroupExecutor(); std::unique_ptr<dynamixel::GroupExecutor> group_executor_follower = connector_follower.createGroupExecutor(); - Create a 
Motorobjects for each Dynamixels, using thecreateMotormethod of theConnectorclass. - In OMX, the leader motors have IDs 1 to 6, and the follower motors have IDs 11 to 16.
    
std::unique_ptr<dynamixel::Motor> leader_motor1 = connector_leader.createMotor(1); std::unique_ptr<dynamixel::Motor> leader_motor2 = connector_leader.createMotor(2); std::unique_ptr<dynamixel::Motor> leader_motor3 = connector_leader.createMotor(3); std::unique_ptr<dynamixel::Motor> leader_motor4 = connector_leader.createMotor(4); std::unique_ptr<dynamixel::Motor> leader_motor5 = connector_leader.createMotor(5); std::unique_ptr<dynamixel::Motor> leader_motor_gripper = connector_leader.createMotor(6); std::unique_ptr<dynamixel::Motor> follower_motor1 = connector_follower.createMotor(11); std::unique_ptr<dynamixel::Motor> follower_motor2 = connector_follower.createMotor(12); std::unique_ptr<dynamixel::Motor> follower_motor3 = connector_follower.createMotor(13); std::unique_ptr<dynamixel::Motor> follower_motor4 = connector_follower.createMotor(14); std::unique_ptr<dynamixel::Motor> follower_motor5 = connector_follower.createMotor(15); std::unique_ptr<dynamixel::Motor> follower_motor_gripper = connector_follower.createMotor(16); 
Enable Follower Torque
- Enable the torque of the follower motors for teleoperation.
    
follower_motor1->enableTorque(); follower_motor2->enableTorque(); follower_motor3->enableTorque(); follower_motor4->enableTorque(); follower_motor5->enableTorque(); follower_motor_gripper->enableTorque(); 
Leader and Follower Control Loop
- In a loop, read the present position of the leader motors simultaneously using the 
stageGetPresentPositionmethod and set the goal position of the follower motors simultaneously to the same value using thestageSetGoalPositionmethod.while(true){ group_executor_leader->addCmd(leader_motor1->stageGetPresentPosition()); group_executor_leader->addCmd(leader_motor2->stageGetPresentPosition()); group_executor_leader->addCmd(leader_motor3->stageGetPresentPosition()); group_executor_leader->addCmd(leader_motor4->stageGetPresentPosition()); group_executor_leader->addCmd(leader_motor5->stageGetPresentPosition()); group_executor_leader->addCmd(leader_motor_gripper->stageGetPresentPosition()); auto result = group_executor_leader->executeRead(); group_executor_leader->clearStagedReadCommands(); int leader_motor1_position = result.value()[0].value(); int leader_motor2_position = result.value()[1].value(); int leader_motor3_position = result.value()[2].value(); int leader_motor4_position = result.value()[3].value(); int leader_motor5_position = result.value()[4].value(); int leader_motor_gripper_position = result.value()[5].value(); group_executor_follower->addCmd(follower_motor1->stageSetGoalPosition(leader_motor1_position)); group_executor_follower->addCmd(follower_motor2->stageSetGoalPosition(leader_motor2_position)); group_executor_follower->addCmd(follower_motor3->stageSetGoalPosition(leader_motor3_position)); group_executor_follower->addCmd(follower_motor4->stageSetGoalPosition(leader_motor4_position)); group_executor_follower->addCmd(follower_motor5->stageSetGoalPosition(leader_motor5_position)); group_executor_follower->addCmd(follower_motor_gripper->stageSetGoalPosition(leader_motor_gripper_position)); auto result_void = group_executor_follower->executeWrite(); group_executor_follower->clearStagedWriteCommands(); } } 
Error Handling
- To ensure your code is robust, every method that sends a command to the motor returns a Result object that encapsulates errors.
 - This object lets you safely check for any communication or device errors before proceeding.
 - executeRead() method returns Result<std::vector<Result<int32_t, Error», Error> type. So you need to check for errors twice.
 - 
    
You can check for communication errors and device(dynamixel) errors using the Result object.
Example
auto result = group_executor->executeRead(); // type of 'result_void' variable is Result<void, DxlError> if (!result_void.isSuccess()) { std::cerr << dynamixel::getErrorMessage(result_void.error()) << std::endl; return 1; } std::vector<int> positions; for (const auto& result : result.value()) { if (!result.isSuccess()) { std::cerr << dynamixel::getErrorMessage(result.error()) << std::endl; return 1; } positions.push_back(result.value()); } - stage functions return Result<void, Error> type.
 - You can either pass this value directly to the addCmd() function, or perform error checking first and then pass the resulting command value.
Example
    
auto result_cmd = motor1->stageGetPresentPosition(); // type of 'result_cmd' variable is Result<stagedCommand, DxlError> if (!result_cmd.isSuccess()) { std::cerr << dynamixel::getErrorMessage(result_cmd.error()) << std::endl; return 1; } group_executor->addCmd(result_cmd.value()); 
Compile and Run
- You can compile and run the code using the following commands
    
$ g++ tutorial_step7.cpp -o tutorial_step7 -l dxl_x64_cpp $ ./tutorial_step7 

